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1. Introduction

Compactifications with non-trivial 3-form fluxes1 provide an exciting new way to construct

phenomenologically interesting stringy models of particle physics and cosmology. These

models come to terms with the difficult issue of moduli stabilization [2, 3] and also provide

a possible explanation for the hierarchy problem of particle physics [2, 4, 5]. In addition

there are important consequences for cosmology. The flux compactifications have lead to

a new understanding of the problem of the cosmological constant [6] and can, in addition,

incorporate the process of inflation [7].

The four-dimensional effective theory of a flux compactification depends heavily on

the value to which the complex structure moduli are fixed. For instance, in the models

explaining the hierarchy, the moduli are fixed close to a conifold point. The distance to

the conifold singularity then sets the hierarchy [2].

As made explicit in [8, 9], the way complex structure moduli are fixed by fluxes is

very analogous to the attractor mechanism [10 – 12] in black hole physics. This raises the

important question whether the presence of a charged black hole in a flux background

can affect the minimum of the potential for the moduli, and thus affect the hierarchy

or other physical properties of the compactification. In this paper we consider such a

situation. We choose to study fluxes that fix the moduli close to a conifold point, as in the

model explaining hierarchies. In general, adding a black hole breaks all supersymmetries.

Nevertheless, we are able to draw some general conclusions.

At string tree-level, the input from the internal geometry to the moduli stabilization

physics is, in both cases, governed by the prepotential of the Calabi-Yau. Close to a conifold

point, this means that not only the black hole, but also the flux compactification can be

1For a recent review with extensive references, see [1].
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described by a matrix model2. We will make use of this fact to estimate the shift in the

minimum of the potential caused by the black hole.

Our result is that for a generic choice of 3-fluxes the black hole has very small impact

on the minimum of the potential. The main reason for this is that the terms in the potential

coming from the black hole is suppressed by ∼ 1/(Q2q2), were Q is integer flux quanta and

q is integer black hole D3-brane charge.

We find a few cases when the above argument might be questioned. These include situ-

ations with fine-tuned flux quanta, and black holes at the end of their Hawking evaporation,

provided the flux quanta and black hole charges are small.

The outline of the paper is as follows. We begin, in section 2, by recalling the rela-

tion between the matrix model free energy and the prepotential of a conifold limit of a

compact Calabi–Yau. With this prepotential all the interesting attractor phenomena can

be studied. Section 3 recalls the relevant material from black hole attractor physics and

flux compactifications, always keeping our explicit example in mind. In both cases we find

effective four-dimensional potentials for the complex structure moduli. In section 4 we

study the combined system and compare the relative importance of the potentials. The

paper ends with the conclusions.

2. The prepotential from the matrix model

Below we review the established connection [13,14] between the matrix model and black

holes. We do this in order to make the reader think in matrix model terms when we later

discuss both black holes and flux compactifications. This unified view on the two systems

is fruitful from a conceptual point of view, and will hopefully deepen our understanding

of the physics of flux compactifications. Also, we explain in more detail the origin of the

non-universal terms, crucial for modelling the embedding of the conifold into a compact

Calabi-Yau.

According to [15] there is a direct relation between BPS black holes in 4D type IIB

supergravity and topological strings propagating on the Calabi-Yau on which the type IIB

ten-dimensional theory is compactified. In [13, 14] this fact was combined with the results

of [16] to set up a detailed match between the free energy of the c = 1 matrix model3 and

the entropy of these extremal black holes.

We are interested in internal manifolds which has complex structure moduli such that

they locally look like deformed conifolds. Not only is this the limit where the matrix

model tools are applicable, but it is also the limit used to explain hierarchies in flux

compactifications.

Let us review the calculation in [14] — with some more details — of the free energy in

the matrix model paying attention to large non-universal terms. These non-universal terms

give the main contribution to the entropy, while some of the dependence on the complex

2For the black hole case, this correspondence holds to all orders in the string loop expansion as described

in [13, 14].
3For a nice review of the matrix model, see [17].
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structure moduli is captured by the universal terms. For concreteness we start out with a

regulated double well potential given by

V (λ) = −λ
2

α′
+Aλ4. (2.1)

Using N fermions we fill up the Fermi sea to a level µ as measured from the top of

the potential. The conifold physics is then described by what is going on near the top

of the potential, while the regulating quartic piece rounds off the conifold and makes it

part of a Calabi-Yau manifold with finite volume [14]. The details of the regularisation

capture the shape of the manifold away from the conifold tip. Our task is then to find

an expression for the canonical free energy FMM (N, β) for the system and its Legendre

transform FMM (µ, β). To accomplish this we express the free energy and the number of

fermions as

FMM (N, β) =

∫ −µ
dεερ (ε) , (2.2)

where µ is to be substituted for N according to

N =

∫ −µ
dερ (ε) , (2.3)

and, where the integration in energy goes from the bottom of the potential up to the Fermi

surface. The density of states is given by

ρ (ε) = β

∫ λ+

λ−

dλ√
2
(
ε+ λ2

α′ −Aλ4
) , (2.4)

where the integration limits are the shores of the Fermi sea. It is now a simple exercise to

compute the free energy and we arrive at

βFMM (µ, β) =
1√
α′
N2

0 −N0µβ −
√
α′ (βµ)2 ln (µ/Λ) , (2.5)

where

Λ ∼ 1

Aα′2
(2.6)

is an effective cutoff introduced by the quartic piece of the potential. N0 is the number

of fermions needed if we fill the potential all the way up and is given, through Bohr-

Sommerfeldt quantization by

N0 ∼
β

Aα′3/2
. (2.7)

Let us explain in some more detail the origin of the various terms. The last term in expres-

sion (2.5) is well known and is simply the standard non-analytic universal contribution to

the free energy of the matrix model. In contrast, the first two terms have an analytic de-

pendence on µ and do not play any role in the usual matrix model analysis. Here, however,

they are of crucial importance. The second term is a consequence of the relation

N0 = − ∂FMM (µ, β)

∂µ

∣∣∣∣
µ=0

, (2.8)
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while the first is obtained from

FMM (0, β) = −FMM (N0, β) = −
∫ 0

dεερ (ε) ∼ 1√
α′β

N2
0 . (2.9)

Here we have used ρ (ε) ∼ β
√
α′ to estimate the bulk density of states. Expressing N0 in

in terms of the parameters of the problem we finally get

βFMM (µ, β) =
1

A2α′7/2
β2 − µβ

Aα′3/2
β −
√
α′ (βµ)2 ln (µ/Λ) . (2.10)

The calculation is performed at zero temperature, but as argued in [13, 14], the relevant

temperature of the matrix model should actually be a multiple of the self-dual temperature

in order to describe the conifold.4 It can be shown, however, that the general form of the

free energy does not change.

Written in the way above, the free energy of the matrix model provides interesting

information about the entropy of four-dimensional black holes. The canonical free energy

FMM (N, β) is directly proportional to the black hole entropy with the various parameters

being related to two sets of electric and magnetic charges. The number of fermions can be

associated with an electric charge q1 ∼ N . The main contribution to the entropy is given

by the analytic piece and is of the form S ∼ N 2, while the universal non-analytic piece

tells us how the entropy varies close to the conifold value N0. The black hole also have

a magnetic charge given by p0 ∼ β. As argued in [13, 14] we can also turn on another

magnetic charge, p1, which from the matrix model point of view corresponds to deforming

the potential by a 1/λ2 piece.

Furthermore, as discussed in [13, 14], the free energy of the matrix model is directly

related to the imaginary part of the prepotential of the four-dimensional supergravity

theory. In the next section we will write down the corresponding prepotential and review

how the attractor equations obtained from the four-dimensional analysis reproduce known

properties of the matrix model and the corresponding black hole. We will also use the

same prepotential to accomplish moduli stabilization through a flux compactification. In

this way we obtain a mapping between quantities of the matrix model and space time not

only in the case of a black hole, but also for flux compactifications.

3. Moduli stabilization in type IIB supergravity

Consider ten-dimensional type IIB supergravity. Neglecting the Chern-Simons term, the

bosonic action is given by5

SIIB =
1

2κ2
10

∫
d10x
√−g

(
R− ∂Mτ∂

Mτ

2(Imτ)2
−− |G3|2

12Imτ
− |F̃5|2

4 · 5!

)
. (3.1)

Here G3 = F3 − τH3 and τ = i
gs

+ C0 is the axio-dilaton.

4Note that the temperature of the black hole in space time is still zero, as explained in [13, 14].
5We use the notations of [2].
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We will study compactifications of this theory to four dimensions, letting the internal

dimensions be a (possibly conformal) Calabi-Yau manifold Y . Specifically we will assume

a complex structure moduli space M of complex dimension one, and that we are close to

a conifold point. Let {AI , BI} I = 0, 1 be a symplectic basis of H3(Y ), so that A1 is the

conifold cycle. Furthermore, let {αI , βI} be a basis of H3(Y ) so that, as usual,
∮

Y
αJ ∧ βI =

∮

AI
αJ =

∮

BJ

βI = δIJ . (3.2)

The periods of the holomorphic 3-form Ω are defined by

XI =

∮

AI
Ω (3.3)

FJ(XI) =

∮

BJ

Ω. (3.4)

Let us work in a Kähler gauge in which X0 = V 1/2 and X1 = V 1/2z. V is the (unwarped)

volume of the Calabi-Yau, and z is the coordinate on M vanishing at the conifold point.

Close to the conifold the prepotential is given by

F = ia1(X0)2 + a2X
0X1 + ia3

(
X1
)2

ln
X1

X0
, (3.5)

where other terms of order O(z2) have been neglected, and the ai are numerical coeffi-

cients depending on the Calabi-Yau geometry. Specifically, a3 = −1/4π. Note that this

prepotential has exactly the same functional form as the matrix model free energy.

Let us now study in turn how wrapped branes and fluxes behave on this geometry.

3.1 A black hole attractor

The presence of a black hole consisting of wrapped D3-branes generates an effective po-

tential for the complex structure moduli. The potential is induced by the 5-form field

strength F̃5 sourced by the black hole charges. The metric is an unwarped product be-

tween a four-dimensional part and a Calabi-Yau part whose complex structure depends on

the space-time point.

We write the four-dimensional part of the black hole metric in the form

g̃(4)
µν dx

µdxν = −e2u(σ)dt2 +
e−2u(σ)c4dσ2

sinh4 (cσ)
+
e−2u(σ)c2

sinh2 (cσ)
dΩ2, (3.6)

where c→ 0 is the extremal limit. Here σ goes from −∞ (horizon) to 0 (spatial infinity).

Furthermore u ∼ cσ as σ → −∞.

In the notation of [18] the field strength is given by

F̃5 = F+ ∗ F = sin θdθ ∧ dφ ∧ Γ + e2udt ∧ dσ ∧ Γ̂. (3.7)

Here Γ is a 3-form corresponding to the black hole charge, and Γ̂ = ∗6Γ is its six-dimensional

Hodge dual. In particular, if the D3-brane wraps the cycles AI(BI) qI(p
I) times, then

Γ = 4π3(α′)2(pIαI + qIβ
I) and, consequently,

∮

S2×AI
F̃5 = ((2π)2α′)2pI and

∮

S2×BI
F̃5 = ((2π)2α′)2qI , (3.8)

for any space-like S2 enclosing the location of the D3-branes.
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In the four-dimensional effective action, this field strength gives rise to the term

Spot = − 1

2κ2
10

∫
d10x
√−g |F̃5|2

4 · 5!
= − 1

2κ2
10

∫
dVol4

1

r4

∮

Y
Γ ∧ Γ̂ = (3.9)

= − 1

2κ2
10

∫
dVol4

Vbh (z)

r4
,

where we reinserted the usual radial coordinate r. In the case of a BPS black hole, the

potential Vbh can be obtained via the Gukov-Vafa-Witten (GVW) superpotential Wbh =∫
Y Ω ∧ Γ [19] as the usual N = 2 scalar potential

Vbh (z) = eKbh
(
Gzz̄bhDzWbhDz̄W bh + |Wbh|2

)
, (3.10)

where Gbh is the metric derived from the Kähler potential Kbh = − ln i
(
X̄IFI −XI F̄I

)
on

M. Using equation (3.5), it is straightforward to express Wbh and Kbh in terms of the

geometrical coefficients ai and the black hole charges. Explicitly, with our gauge choice,

we obtain6

Wbh (z) = V 1/2(α′)2w(z) (3.11)

with

w = q0 − 2ia1p
0 − a2p

1 +
(
q1 − a2p

0 − ia3p
1
)
z + ia3p

0z2 − 2ia3p
1z ln z. (3.12)

Furthermore, we have the Kähler potential Kbh = Kbh (z, z̄) given by

e−Kbh = V k(z, z̄) = V
(

4a1 − a3 (z − z̄)2 + 2a3 |z|2 ln |z|2
)
. (3.13)

It is now easy to see that the usual matrix model results are reproduced. If we minimize

the potential through ∂zVbh = 0, we find

DzWbh = V 1/2 kwz − kzw
k

= 0. (3.14)

This is just the attractor equations for the complex structure moduli. Focusing on the

black hole corresponding to the undeformed matrix model (it is easy to generalize to the

general case), we have q0 = p1 = 0 and the attractor equations tell us that, to first order

in z,

q1 = a2p
0 − 2a3p

0x lnx− a3p
0x, (3.15)

where z = ix and x is real. Note that z = X1

X0 ∼ iµ. This is nothing else than the formula

for the number of fermions q1 ∼ N near its critical value given by p0 ∼ β, when we fill up

the Fermi sea towards the top of the potential.

6For notational simplicity we ignore factors of π.
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3.2 Flux compactifications and hierarchies

Warped geometries have played a crucial role in the construction of realistic phenomenolog-

ical models. The reasons are twofold. On the one hand the introduction of 3-form fluxes,

F3 and H3, on the compact manifold works just like the introduction of space time filling

D3-branes. These branes appear as point sources on the compact manifold and correspond

to deep throats of warped geometry. The warping introduces a relative redshift between

various points on the compact manifold which can be used to explain hierarchies of scales.

On the other hand, the fluxes introduce potentials for the complex moduli of the Calabi-

Yau manifold. This happens quite analogously to the black hole case. One difference,

however, is that the potential now receives contributions not only from the 3-form flux

term in the action, but also from the 5-form and the Einstein-Hilbert term. Through the

equations of motion, these terms can be rewritten in terms of the fluxes.

The potential part of the effective action becomes [4]

Spot = − 1

2κ2
10

∫
dVol4

∮

Y

e4A

2Imτ
G3 ∧

(
∗6G3 + iG3

)
= − 1

2κ2
10

∫
dVol4Vf (z) . (3.16)

Also in this case, the form of the effective potential for the moduli is governed by the

geometry of the internal manifold. It it given by the usual N = 1 scalar potential

Vf (z) = eKf
(
GABDAWfDBW f − 3 |Wf |2

)
. (3.17)

where Wf =
∫
Y Ω ∧ G3 again is the GVW superpotential. The indices A,B go over z, τ

and the volume modulus ρ. The Kähler potential Kf now also depends on the axio-dilaton

and on the volume modulus:

Kf = − ln [−i(τ − τ̄)]− 3 ln [−i(ρ− ρ̄)]− ln

[
−i
∮

Y
e−4AΩ ∧ Ω

]
. (3.18)

The coefficient of the ρ term shows that the Kähler potential is of no-scale form, as noticed

in [2]. From here it is a straightforward calculation to obtain the behaviour of Vf in terms

of the flux quanta and the geometrical parameters ai. We return to this in the next section.

We choose non-zero fluxes such that
∮

A1

F3 = (2π)2α′P 1 (3.19)

∮

B1

H3 = −(2π)2α′Q1, (3.20)

where P 1 and Q1 are integers. If we do this we end up with a superpotential of the same

form as in [2]. Specifically, we have (still ignoring factors of π)

Wf (z) = V 1/2α′
(
−a2P

1 +
(
τQ1 − ia3P

1
)
z − 2ia3P

1z ln z
)
. (3.21)

The only difference from the analysis of the black hole is to keep track of the complex

coupling τ that multiplies the H3 fluxes. The attractor equations tell us, in the limit of

small z, that

τQ1 − 2ia3P
1(ln z + 3/2) ∼ 0. (3.22)

– 7 –
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This leads to an exponentially small modulus z ∼ e−Q1/gsP 1
. Actually, we must also

turn on an H3 flux P 0 through the A0 cycle in order to satisfy the axio-dilaton equation

DτW = 0 at minimum. This will fix the string coupling as explained in [2].

As argued in [2] this procedure gives a possible explanation for a large hierarchy

through the relation between the moduli and the warp factor. The conifold equation

is given by

y2
1 + y2

2 + y2
3 + y2

4 = z, (3.23)

where a non-zero modulus z cuts off the deep throat. Hence the warp factor can not become

arbitrarily small.

We note the similarity with the black hole case. With the particular charges we have

chosen the black hole modulus became purely imaginary, while it became real in the flux

case (if τ = i
gs

). However, an arbitrary τ yields a complex modulus. Similarly, in the black

hole case, a non-zero p1 charge leads to a complex modulus. This would correspond to the

deformed matrix model.

4. A black hole in a flux background

We now come to the main topic of our discussion: a combined analysis where we consider

a black hole in a flux background.

There are topological restrictions against introducing D3-branes in backgrounds with

fluxes [20 – 23]. Most importantly, the 3-fluxes H3 and F3 need to be cohomologically trivial

on the world-volume of the brane. This reduces the space of possible charges of the black

hole. We will consider completely general charges, and only implicitly assume that they

can be consistently introduced into the background in question.

According to the attractor mechanism, complex structure moduli are drawn to fixed

values on the horizon of an extremal black hole. This is only true, however, if there is no

other contributions to the potential for the complex structure moduli. For instance, in a

flux compactification there is a possible conflict with the value determined far away from

the black hole through the fluxes. We can expect a competition between the potential as

given by the fluxes and the potential induced by the black hole. The physical question we

would like to address is whether the black hole, in an appreciable way, can affect where the

fluxes lock the moduli.

We imagine a flux compactification where the moduli are fixed at the minimum of

Vf (z). That is, we fix z = zf such that ∂zVf (zf ) = 0. This remains true even if there is

a black hole present provided we are far away from the black hole. What happens if we

move in closer? Eventually the black hole potential Vbh (z) will start to play a role and we

need to consider the combined system.

To exactly solve for a black hole in a flux compactification is certainly a very compli-

cated task. In principle we should start with an ansatz of the form

ds2 = e2A(y,σ)g̃(4)
µν dx

µdxν + e−2A(y,σ)g̃(6)
nmdy

ndym, (4.1)

where the four-dimensional part is the same as before and we have allowed for a warp

factor depending on space time. We will not go through such an analysis. What we will do

– 8 –
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instead is simply to estimate when the two competing effects are of comparable order and

if and when interesting new physics can occur. To do this we just need the expressions for

the respective potentials. The total effective potential piece, ignoring back reaction on the

flux term from the black hole piece and vice versa, is given by

Spot = − 1

2κ2
10

∫
dVol4

(
1

r4
Vbh (z) + Vf (z)

)
. (4.2)

When examining this expression we disregard effects of the warping. Since the warped

throat is small compared to the bulk, the warping ought to cancel out when integrating

over the whole internal manifold [24].

It is clear from (4.2) that the effect of the black hole is largest at the horizon. There

the black hole potential is suppressed by a factor of R−4, where R is the black hole radius.

Thus, for any macroscopic black hole, it will be substantially suppressed. In order to study

the charge dependence of the suppression we note that for an extremal black hole, the

radius is proportional to the charge q of the black hole,7 R ∼ q. The potentials themselves

are proportional to the square of the corresponding flux quanta Q and charge. We therefore

expect that the effect of the black hole is suppressed by a numerical factor ∼ 1/(Q2q2).

Thus the effect on the minimum of the potential should be negligible8.

This qualitative argument might however go wrong if the functional forms of the two

potentials Vf and Vbh differ substantially. That this could be the case can be seen from

Vf (z) = eKf
(
Gzz̄f DzWfDz̄W f + Gτ τ̄f DτWfDτ̄W f

)
, (4.3)

Vbh (z) = eKbh
(
Gzz̄bhDzWbhDz̄W bh + |Wbh|2

)
, (4.4)

where we used the no-scale behaviour to eliminate −3|Wf |2. A simple calculation shows

that Gτ τ̄f DτWfDτ̄W f ∼ |Wf (τ → τ̄)|2. Thus, almost identical terms appear in both

potentials. The only thing that might be a concern is if the dominant term in ∂zVf
vanishes.

Let us therefore study these expressions more closely, using the explicit prepoten-

tial (3.5). For both the flux and the black hole case let

W ∼ w(z) = A0 +A1z +A2z
2 +A3z ln z (4.5)

e−K ∼ k(z) = B0 +B1 (z − z̄)2 +B2zz̄ ln zz̄ (4.6)

where the Ai and Bi are combinations of flux quanta/charges and geometrical constants,

which are linear in the charges. Since we are interested in where the modulus is fixed, we

study ∂zV . Using the above expressions the leading terms are9

∂

∂z
eKWW ∼ Ā0

B0
(A1 +A3(ln z + 1)) (4.7)

7The exact constant of of proportionality depends on the geometry and size of the internal dimensions.
8This analysis might not apply to charged black holes that classically have vanishing horizon area. When

higher derivative terms in the action are taken into account, these black holes acquire a string scale horizon

area that scales as ∼ q [25, 26].
9Note that these expressions are valid for any charge/flux configuration. In particular, zbh need not lie

close to the conifold point.
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∂

∂z
eKGzz̄DzWDz̄W ∼

1

z

(
A3

(
Ā1 + Ā3(ln z̄ + 1)

)

B2 ln zz̄
− |A1 +A3(ln z + 1)|2

B2 (ln zz̄)2

)
. (4.8)

We see that (for small z) the dominant contributions to the derivative of the potentials

come from DWDW in both cases. Let us now add the two potential contributions and

solve for z. Since ln zz̄ is a large number we need only consider the first term in (4.8).

Thus we wish to solve

R4Ā3f (A1f +A3f (ln z + 1)) + Ā3bh (A1bh +A3bh(ln z + 1)) = 0. (4.9)

Now we use that (A1f +A3f (ln zf + 1)) = 0 is the zeroth order attractor equation. Thus,

we have that

A1f +A3f (ln z + 1) = A1f +A3f (ln zf + ln(z/zf ) + 1) ∼ A3f ln(z/zf ). (4.10)

Solving (4.9) now yields

ln z − ln zf = − |A3bh|2
|A3f |2R4 + |A3bh|2

(
ln zf + 1 +

A1bh

A3bh

)
. (4.11)

This equation shows that indeed, for the generic case, z will be fixed close to zf . This is

because the prefactor of the right-hand side is ∼ 1/(Q2q2).

However, note that ln zf is typically rather large: to create a hierarchy of the weak and

Planck energy scales of order ∼ 10−15 we need ln zf ∼ −100 [2]. Therefore it might suffice

to have 1/(Q2q2) as small as 1/100 to change the fixed value of the modulus by a factor

significantly different from 1. This would correspond to q ∼ 1, and Q ∼ 10. If the fluxes

and charges are small, this could be possible for a black hole in the end of its evaporation

process. For such small charges, however, the supergravity approximation used in this

analysis is likely to be invalid.

Performing the same analysis for the case A3 = 0, we obtain the leading contribution

to be

∂zV ∼
1

z

|A1|2
B2(ln(zz̄))2

. (4.12)

Since, from the attractor equations, the constant A1f = O(zf ) this contribution is generally

much smaller than the dominant term when A3f 6= 0. Thus if the black hole has a p1 charge

while there is no P 1 flux we have a problem. This is however a fine-tuned case. For a generic

flux compactification such flux will be present.

Our conclusion is that the flux compactifications generically are stable against the

introduction of macroscopic black holes. There are some special cases where the black hole

might be important: notably if there is no A1-flux, or at the end of Hawking evaporation

provided the fluxes and charges are small. In these cases it would be important to work

out the explicit dependence on the geometry of the extra dimensions. We will return to

this in a future publication.
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5. Conclusions and outlook

In this paper, we have seen that the complex structure moduli stabilization provided by

type IIB flux compactifications is stable against the introduction of a charged black hole.

We have considered the phenomenologically interesting case when the type IIB theory is

compactified on a local deformed conifold, and fluxes are chosen such that the complex

structure modulus is fixed near the conifold point. By wrapping D3-branes around cycles

of the internal manifold, we have added a black hole to this picture. The leading terms for

the moduli-fixing potentials show that the black hole effect is negligible in the generic case.

In particular, the black hole contribution is suppressed by 1/(Q2q2) where Q is integer

flux quanta, and q integer black hole charges. We find a few exceptional cases where the

conclusion might not hold; for instance if there is no A1-flux, or at the end of Hawking

evaporation provided the fluxes and charges are small.

So far, we have analysed how a black hole influences the moduli fixing of a flux com-

pactification. It would also be interesting to study the reversed question, i.e. how the black

hole behaves in a flux background. We have already seen that the black hole attractor

mechanism is changed by the fluxes, since these fix the complex structure moduli to a new

point in moduli space. Since, for example, the horizon area depends on the value of the

moduli at the black hole horizon we might expect that the black hole physics is altered.

Furthermore, our analysis has been qualitative, and quantitative results would be

very interesting. To achieve this, the full ten-dimensional equations of motion need to be

solved. One would then be in a position to study the moduli fixing exactly and, e.g., how

the warping depends on space-time.

We have also seen that, via the internal geometry there is a correspondence between a

matrix model and this flux compactification. It would be interesting to see if a matrix model

approach could be applied to other aspects of such effective theories. In particular it would

be very interesting to investigate whether, as in the black hole case, some matrix model

could provide quantum corrections to the compactified theory. Such a relationship could

possibly be found via a topological string theory on the generalized Calabi-Yau manifold

used in the compactification.
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